Eiszeitalter: Unterschied zwischen den Versionen

Aus Klimawandel
Wechseln zu: Navigation, Suche
Zeile 85: Zeile 85:
 
|Zeitlich Teil von=Paläozoikum und Mesozoikum
 
|Zeitlich Teil von=Paläozoikum und Mesozoikum
 
}}
 
}}
<metakeywords>DBS-Wiki-KW, [Eiszeitalter: Arbeitsblatt]], Holozän, Känozoikum, Erdbahnparameter, Biosphäre_im_Klimasystem, Treibhausgase, Eis-Albedo-Rückkopplung, Anthropozän, Präkambrium, Paläozoikum und Mesozoikum, Klimageschichte, Klimaänderungen, Eiszeitalter, Kryosphäre</metakeywords>
+
<metakeywords>DBS-Wiki-KW, Arbeitsblatt, Holozän, Känozoikum, Erdbahnparameter, Biosphäre_im_Klimasystem, Treibhausgase, Eis-Albedo-Rückkopplung, Anthropozän, Präkambrium, Paläozoikum und Mesozoikum, Klimageschichte, Klimaänderungen, Eiszeitalter, Kryosphäre</metakeywords>
  
 
[[Kategorie:Klimageschichte]]
 
[[Kategorie:Klimageschichte]]

Version vom 21. Oktober 2013, 14:55 Uhr

Erdbahnparameter und ihre Zyklen in den letzten 1000 Millionen Jahren

Als Eiszeitalter werden Perioden der Erdgeschichte bezeichnet, in denen sich um beide Pole herum, z.T. bis in die mittleren Breiten reichend, größere Vereisungen gebildet haben. Im Laufe der Erdgeschichte gab es mindestens sechs solcher Eiszeitalter, z. B. vor 600 und vor 300 Millionen Jahren. Die jüngste Epoche der Erdgeschichte, die vor etwa 2,7 Millionen Jahre begann, ist in diesem Sinne ebenfalls ein Eiszeitalter. Sie ist gekennzeichnet durch deutliche Schwankungen zwischen kälteren und wärmeren Phasen, den sogenannten Kaltzeiten oder Glazialen (gelegentlich auch "Eiszeit" genannt) und Warmzeiten oder Interglazialen. Gegenwärtig befinden wir uns in einer Warmzeit dieses Eiszeitalters.

1 Das Quartär

Gliederung des Erdzeitalters

Eiszeitalter gab es auch in früheren Epochen der Erdgeschichte, die jedoch während der meisten Zeit eisfrei war. Das gegenwärtige Eiszeitalter wird in der Fachsprache als Quartär bezeichnet und in das Pleistozän (das eigentliche Eiszeitalter) und das Holozän (die Nacheiszeit) untergliedert. Es ist die jüngste Phase des Känozoikums, der Erdneuzeit. Die jüngste Vereisung der Erde setzte allerdings bereits sehr viel früher als das gegenwärtige Eiszeitalter ein. Bereits ca. 35 Mill. Jahre vor heute bildete sich der antarktische Eisschild. Erst mit der Vereisung auch der Arktis um etwa 2,7 Mill. Jahre v.h. begann dann das Quartär. Zusammen mit anderen Eiszeitaltern der Erdgeschichte zeichnet sich das Quartär dadurch aus, dass um beide Pole herum größere Eisschilde zu finden sind. Diese Eismassen stießen vor allem auf der Nordhalbkugel in den Kaltzeiten weit nach Süden vor und banden so viel Wasser, dass sich der Meeresspiegel um 100 m und mehr gegenüber den Warmzeiten senkte. So lag der Meeresspiegel im Letzten Glazialen Maximum (LGM) vor etwa 20 000 Jahren um 130 m niedriger als heute, woraus sich ableiten lässt, dass das gesamte globale Eisvolumen um 50 Millionen km3 größer als das gegenwärtige war.

Temperatur und CO2 in den letzten 640 000 Jahren

1.1 Kalt- und Warmphasen

Während des gegenwärtigen Eiszeitalters wechseln sich warme und kalte Phasen in einem Zyklus von ungefähr 100 000 Jahren ab. Das Quartär umfasste über 20 Kalt-/Warmzeit-Zyklen, wobei die Amplitude der früheren Zyklen wahrscheinlich geringer war als die der späteren. Dem Holozän der Gegenwart ging vor ungefähr 130 000 bis 116 000 Jahren das Eem und vor etwa 230 000 Jahren die Holstein-Warmzeit voraus. Das Eem war um etwa 2 °C wärmer als das Holozän. Vor allem die Winter waren offensichtlich wesentlich milder. Die Warmzeiten dauerten zwischen 10 000 und 30 000 Jahren.[1] Dazwischen lagen verschiedene Kaltzeiten wie die Weichsel-, die Saale- oder die Elster-Kaltzeit (Benennungen nach der norddeutschen Nomenklatur). Eine besonders lange Warmzeit von ca. 30 000 Jahren gab es vor etwa 400 000 Jahren. Auch für die jetzige Warmzeit ist unter natürlichen CO2-Bedingungen eine ähnliche Dauer berechnet worden.[2] Bleibt der jetzige Kohlendioxidgehalt der Atmosphäre über viele Tausend Jahre erhalten oder steigt sogar noch weiter an, könnte die nächste Kaltzeit ausfallen und das seit 2,6 Millionen Jahren andauernde Eiszeitalter beendet sein. Die Menschheit hätte dann möglicherweise eine neue Klimaepoche eingeleitet, das "Anthropozän".[3]

1.2 Kaltzeitliche Klimaschwankungen

Bei einem Vergleich zwischen der aktuellen Warmzeit und der letzten Kaltzeit fällt auf, dass es in der Kaltzeit starke Temperaturschwankungen gab, die für das Holozän unbekannt sind. Es gab relativ warme Perioden, die sogenannten Dansgaard-Oeschger-Zyklen, und besonders kalte Perioden, die sogenannten Heinrich-Events. Diese Ereignisse waren auf den Nordatlantikraum konzentriert, während auf der Südhalbkugel jeweils umgekehrte Verhältnisse herrschten. Als Ursache wird eine Verstärkung bzw. ein Aussetzen der kaltzeitlichen thermohalinen Zirkulation angenommen, bedingt durch die Verringerung bzw. Verstärkung der Frischwasserzufuhr von den Eisschilden der Nordhalbkugel. Auch das Ende der letzten Kaltzeit war von heftigen Klimaschwankungen begleitet, der warmen Alleröd- und der kalten Jüngeren Dryas-Phase.

2 Ursachen

Bedingungen für Warmzeit und Kaltzeit in Abhängigkeit von den Erdbahnparametern

2.1 Kalt- und Warmzeiten

Strahlungsantrieb durch die Sonneneinstrahlung, bedingt durch Änderungen der Erdbahnparameter

2.1.1 Milankovitch-Theorie

Die grundlegende Ursache für die verhältnismäßig regelmäßigen Schwankungen zwischen Kalt- und Warmzeiten im Quartär wird in der Variabilität der Erdbahnparameter gesehen. Diese Erklärung wird nach dem Pionier der Erforschung des orbitalen Antriebs auch als Milankovitch-Theorie bezeichnet. Sie besagt, dass sich die Erde nicht gleichmäßig wie ein Uhrwerk um die Sonne bewegt, sondern aufgrund der Anziehungskraft durch andere Planeten quasi regelmäßige Abweichungen davon aufweist, die verschiedenen Zeitskalen folgen und sich vorausberechnen lassen. Es gibt zum einen die Abweichung der elliptischen Erdbahn von der Kreisbahn, die Exzentrizität, dann die Variation in der Neigung der Erdachse gegen die Erdbahnebene, die Obliquität, und schließlich die Präzession, eine Art Pendelbewegung der Achse der Erde. In der Summe kommt es zu komplizierten Überlagerungen und Abhängigkeiten der einzelnen Effekte.

Entscheidend ist dabei, wie viel Sonnenstrahlung die Kontinente der Nordhalbkugel im Sommer erhalten: Fällt sie unter einen kritischen Wert, schmilzt der Schnee des letzten Winters nicht mehr ab, im nächsten Winter fällt darauf neuer Schnee und allmählich entsteht ein Eisschild. Günstige Bedingungen für warme Sommer auf der Nordhalbkugel liegen in folgenden Fällen vor:

  1. Die Erde befindet sich auf ihrer elliptischen Bahn im Nordsommer deutlich näher zur Sonne als im Nordwinter (Exzentrizität).
  2. Die Erdachse ist relativ stark geneigt (Obliquität), und zwar gerade im Nordsommer zur Sonne hin (Präzession).

Die nächste stärkere Reduzierung der solaren Einstrahlung auf die Nordhalbkugel im Sommer beginnt in 30 000 Jahren.[1]

2.1.2 Rückkopplungsprozesse

Die Unterschiede in der Sonneneinstrahlung durch die Schwankungen der Erdbahnparameter sind jedoch viel zu schwach, um das ganze Ausmaß der Temperaturunterschiede zwischen Kalt- und Warmzeiten zu erklären. Tatsächlich lässt sich aus ihnen nur ein Temperaturunterschied von höchstens 0,5 °C ableiten, während der tatsächliche Unterschied typischerweise bei 5 °C lag. Es muss also Prozesse im Klimasystem selbst gegeben haben, die durch positive Rückkopplungen den solaren Antrieb wesentlich verstärkt haben. Diese werden heute in zwei Faktoren gesehen:

  1. in der Albedo, vor allem der Eis-Albedo,
  2. in den Treibhausgasen der Atmosphäre, vor allem dem Kohlendioxid.[4]
Der Strahlungsantrieb zwischen dem Letzten Glazialen Maximum (LGM) und heute

Bei einer Abkühlung durch verminderte solare Strahlung, die orbital verursacht ist, wachsen die Eis- und Schneeflächen. Die Folge ist eine verstärkte Reflexion der Sonneneinstrahlung, die eine weitere Abkühlung und ein weiteres Wachsen der Eis- und Schneeflächen zur Folge haben usw. Auch die Vegetation spielt dabei eine, wenn auch geringere Rolle. In einem kälteren Klima gehen die Vegetationsflächen zurück, wodurch ebenfalls die solare Einstrahlung stärker reflektiert wird. Außerdem verstärkt auch eine höhere Konzentration von mineralischem Staub in der Atmosphäre die globale Albedo. Aus vegetationsfreien Flächen kann auch mehr Staub ausgeweht werden. Eine weitere Rolle spielt die Absenkung des Meeresspiegels, wodurch Landflächen mit geringer Albedo frei werden. Durch die Albedo-Rückkopplung lassen sich mindestens 3,5 Watt/m2 bzw.2,5 °C der Temperaturdifferenz zwischen Kalt und Warmzeiten erklären.[4] Der IPCC-Bericht von 2007 nimmt sogar 4,2 Watt/m2 an, mit allerdings großen Unsicherheiten bei der Wirkung von Vegetation und Staub.[5]

Die Treibhausgase spielen eine ähnliche Rolle wie die Albedo. Sie stehen für etwa 3 Watt/m2 bzw. ca. 2 °C des Temperaturunterschieds.[4] Nach IPCC-Angaben liegt der Strahlungseffekt bei 2 Watt/m2.[6] Warum ist das so? In den Kaltzeiten lag der CO2-Gehalt bei 190 ppm (heute 385 ppm)[7], in den Warmzeiten bei 280 ppm. Der Grund liegt vor allem in der Aufnahmekapazität des Ozeans, der bei einer Abkühlung der Atmosphäre CO2 entzieht und bei einer Erwärmung CO2 an sie abgibt. Auch hier spielt sich über die Landvegetation eine sekundäre (in diesem Fall negative) Rückkopplung ab. Die verminderte Vegetation in Kaltzeiten kann weniger Kohlendioxid speichern als eine üppige Vegetationsdecke in Warmzeiten. Neben Kohlendioxid spielen dabei auch andere Treibhausgase eine Rolle. CO2 steht allerdings für 75% des Antriebs durch Treibhausgase, Methan für 14% und Distickstoffoxid für 11%.[4]

Die verzögerte Aufnahme bzw. Abgabe des sich abkühlenden bzw. erwärmenden Ozeans hat zur Folge, dass sich in den Daten der Eisbohrkern zunächst eine Temperaturab- bzw. -zunahme zeigt und erst nach einigen Hundert Jahren auch ein Anstieg des Kohlendioxids.[8] Von Klimaskeptikern ist dieses Phänomen als Argument dafür benutzt worden, dass Kohlendioxid für Klimaänderungen keine Rolle spiele. Übersehen wird dabei, dass die orbital bedingten Temperaturschwankungen nur für einen anfänglichen kleinen Teil des Gesamtunterschiedes zwischen Kalt- und Warmzeiten verantwortlich sind, der als Ganzes nur durch die oben beschriebenen Rückkopplungsprozesse erklärt werden kann. Auch die Klimaentwicklung im gesamten Känozoikum zeigt, dass Klimaänderungen ganz entscheidend durch Kohlendioxid beeinflusst werden.

2.2 Der Beginn des Eiszeitalters

Die Erde hat sich auch vor Beginn des Eiszeitalters schon mit ähnlichen Schwankungen um die Sonne bewegt.

Warum hat dann aber das gegenwärtige Eiszeitalter erst vor 2,7 Mill. Jahren eingesetzt?

Dafür werden vor allem zwei Ursachen diskutiert. Die bedeutendste Ursachen ist wahrscheinlich die veränderte atmosphärische Zusammensetzung der Atmosphäre seit dem frühen Känozoikum.[9] Am Beginn des Känozoikums vor 50-60 Millionen Jahren lag der CO2-Gehalt bei 1000-1500 ppm (ein Wert, der nach dem extremen IPCC-Szenario A1Fl bis zum Jahr 2100 erreicht werden könnte). Vor 10-20 Millionen Jahren v.h. war dieser Wert auf 350-400 ppm gesunken und ging dann zwischen 5 und 2 Mio. Jahren auf weniger als 300 ppm zurück.[10] Die letzte Absenkung des Kohlendioxidgehalts der Atmosphäre hatte eine Abkühlung auf Grönland um 2-3 °C zur Folge. Als Begründung für den CO2-Rückgang werden verschiedene Vorgänge angenommen. Durch große Gebirgsbildungsprozesse, vor allem die Aufwölbung des Himalayas und des tibetischen Plateaus, der zentralen Anden mit dem Altiplano und der kanadischen Rocky Mountains, wurde ab etwa 36 Millionen Jahre v.h. Kohlendioxid bei Verwitterungsprozessen in hohen Maßen aus der Atmosphäre gebunden und dem Ozean zugeführt. Damit begann eine tendenzielle Abkühlung, die zunächst die Bildung des antarktischen Eisschildes einleitete und später zur Vereisung der Nordhalbkugel geführt haben soll.

Auch die Schließung der mittelamerikanischen Landbrücke, die bereits vor 13 Millionen Jahre begann und vor 2,7 Millionen Jahren nahezu beendet war, wird als Ursache für den Beginn des Eiszeitalters diskutiert.[9][10] Hierdurch entstand erst die heute das nordatlantische Klima bestimmende Thermohaline Zirkulation mit Golf- und Nordatlantikstrom.[11] Das ozeanische Strömungssystem, das bis dahin zwischen den beiden amerikanischen Kontinenten den Atlantik mit dem Pazifik verband, organisierte sich neu und nahm das heutige Aussehen im Nordatlantik an. Dadurch wurde wie in der Gegenwart warmes und salzreiches Wasser weit nach Norden transportiert, die Verdunstung in den höheren nördlichen Breiten verstärkt und Wasserdampf zunehmend über die großen Landmassen transportiert. Damit war genügend Feuchtigkeit in der Atmosphäre zur Bildung von großen Eismassen vorhanden. Die verminderte Sonneneinstrahlung der nächsten "kühlen" Phase der Milankovitch-Zyklen sorgte dann dafür, dass der Niederschlag als Schnee auf die Landflächen der höheren Breiten fiel und auch im Sommer liegen blieb. Und als Folge entwickelten sich die ersten großen Eisschilde auf der Nordhalbkugel, und der Beginn des Pleistozäns war eingeleitet.

Wahrscheinlich lässt sich der Beginn des Eiszeitalters jedoch nicht auf einen einzigen tektonischen Vorgang zurückführen.[12] Weitere Vorgänge spielten möglicherweise ebenfalls eine Rolle, so die Anhebung großer Landmassen in kühlere Zonen der Atmosphäre oder die allmähliche plattentektonische Verschiebung der Kontinenten der Nordhalbkugel Richtung Pol.

3 Einzelnachweise

  1. 1,0 1,1 IPCC (2007): Climate Change 2007, Working Group I: The Science of Climate Change, 6.4.1.5 Referenzfehler: Ungültiges <ref>-Tag. Der Name „IPCC_2007“ wurde mehrere Male mit einem unterschiedlichen Inhalt definiert.
  2. IPCC (2007): Climate Change 2007, Working Group I: The Science of Climate Change, 6.4.1.8
  3. Paul J. Crutzen (2002): Geology of mankind, Nature 415, 23; Jan Zalasiewicz et al. (2008): Are we now living in the Anthropocene?, GSA TODAY, 18/2, 4-8
  4. 4,0 4,1 4,2 4,3 Hansen, J. et al. (2008): Target Atmospheric CO2: Where Should Humanity Aim?
  5. IPCC (2007): Climate Change 2007, Working Group I: The Science of Climate Change, Figure 6.5
  6. IPCC (2007): Climate Change 2007, Working Group I: The Science of Climate Change, 6.4.1.2
  7. ppm (Teile pro Million) ist das Verhältnis der Anzahl von Treibhausgasmolekülen zur Gesamtzahl der Moleküle in trockener Luft.
  8. IPCC (2007): Climate Change 2007, Working Group I: The Science of Climate Change, 6.4.1
  9. 9,0 9,1 Ruddiman, W.F. (2010): A Paleoclimatic Enigma?, Science 328, 838-839
  10. 10,0 10,1 Sarnthein, M. (2011): Beginn der großen Vereisung im Quartär und und zur Rolle von Ozean und CO2, in: José L. Lozán et al. (Hrsg.): Warnsignal Klima: Die Meere - Änderungen und Risiken. Wissenschaftliche Auswertungen, Hamburg, 120-125
  11. Haug, G., R. Tiedemann und R. Zahn (2002): Vom Panama-Isthmus zum Grönlandeis, Spektrum der Wissenschaft Dossier 1/2002, 50-52; Driscoll, N.W. and G.H. Haug (1998): A Short Circuit in Thermohaline Circulation: A Cause for Northern Hemisphere Glaciation?, Science 282, 436-438; Haug, G.H. and R. Tiedemann (1998): Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation, Nature 393, 673-676
  12. Ravelo, A.C. et al. (2004): Regional climate shifts caused by gradual global cooling in the Pliocene epoch, Nature 429, 263-267

4 Unterricht

5 Literatur

  • Edmund Blair Bolles: Eiszeit. Wie ein Professor, ein Politiker und ein Dichter das ewige Eis entdeckten. Argon, Berlin 2000
  • Hansjürgen Müller-Beck: Die Eiszeiten. Naturgeschichte und Menschheitsgeschichte. Beck, München 2005: Knappe Einführung aus der Beck'schen Reihe
  • Josef Klostermann: Das Klima im Eiszeitalter. Schweizerbart, Stuttgart 1999
  • Christian-Dietrich Schönwiese: Klima im Wandel. Tatsachen, Irrtümer, Risiken. Deutsche Verlagsanstalt, 1992
  • Wolfgang Fraedrich: Spuren der Eiszeit - Landschaftsformen in Europa, Springer Verlag
  • William Ruddiman: Earth´s climate: past and future, New York 2002, 465 S.(englisch)
  • Roland Walter: Erdgeschichte - Die Entstehung der Kontinente und Ozeane, 5. Auflage, Walter de Gruyter, Berlin, New York, 2003

6 Weblinks

7 Lizenzangaben

Dieser Artikel ist ein Originalartikel des Klima-Wiki und steht unter der Creative Commons Lizenz Namensnennung-Weitergabe unter gleichen Bedingungen 3.0 Deutschland. Informationen zum Lizenzstatus eingebundener Mediendateien (etwa Bilder oder Videos) können in einigen Fällen durch Anklicken dieser Mediendateien abgerufen werden und sind andernfalls über Dieter Kasang zu erfragen. CC-by-sa.png
Kontakt: Dieter Kasang

Meine Werkzeuge