Klimavorhersagen

Aus Klimawandel

Klimavorhersagen beziehen sich auf die zukünftige Klimaentwicklung der nächsten Jahre bis zu einem Jahrzehnt. Sie stehen damit zwischen Wettervorsagen (die nächsten Tage) und Klimaprojektionen (Jahrzehnte bis Jahrhunderte).

Klimaprojektionen und Klimavorhersagen

Welche klimatischen Verhältnisse auf der Erde am Ende dieses Jahrhunderts herrschen werden, vermag niemand vorherzusagen. Die Klimaforschung entwirft Szenarien von möglichen Klimazuständen in ca. 100 Jahren und mehr, die weit voneinander abweichen. So könnte hiernach gegen Ende des 21. Jahrhunderts die globale Mitteltemperatur zwischen 1,4 und 6,4 °C über der vorindustriellen liegen. Solche Entwürfe werden als „Klimaprojektionen“ bezeichnet. Sie beruhen auf Computermodellrechnungen, die wiederum auf verschiedenen Szenarien künftiger Treibhausgasemissionen durch menschliche Aktivitäten oder deren Wirkungen auf den Strahlungshaushalt der Atmosphäre basieren.

Für den Bedarf zahlreicher gesellschaftlicher Sektoren sind Klimaprojektionen jedoch unbefriedigend. Sie beziehen sich meistens auf eine zu ferne Zukunft und geben keine Auskunft über die tatsächlichen Klimaverhältnisse, da sie nicht nur die wirkliche Emissionsentwicklung der Treibhausgase nicht kennen, sondern auch die natürlichen Klimaschwankungen nicht berücksichtigen. Im Küstenschutz, im Wassermanagement, im Gesundheitssektor oder in der Landwirtschaft ist man dagegen daran interessiert zu wissen, wie das Klima sich über die nächsten Jahre oder allenfalls zwei bis drei Jahrzehnte tatsächlich entwickeln wird. Dafür braucht man Klimavorhersagen, die sowohl den Einfluss der anthropogenen Treibhausgase und Aerosole auf das Klima berechnen wie die natürlichen Klimaschwankungen berücksichtigen. Letztere bestehen einerseits aus externen Einflüssen auf das Klima durch die Sonneneinstrahlung und Vulkanausbrüche und andererseits aus internen Schwankungen des Klimasystems.

Klimavorhersagen sind allerdings auch keine Wettervorhersagen für die nächsten Jahre oder Jahrzehnte. Wie Klimaprojektionen beziehen sie sich auf das durchschnittliche Wetter in einem mehr oder weniger langen Zeitraum. Sie fragen z.B. nicht danach, ob es am 1. Juli 2025 in Hamburg regnen wird und wie warm es an diesem Tag sein wird, sondern danach, ob das nächste Jahrzehnt in Deutschland im Mittel regenreicher oder wärmer sein wird als das vergangene Jahrzehnt. Klimavorhersagen stellen somit eine Brücke zwischen Wettervorhersagen und Klimaprojektionen dar. Der Bedarf an solchen Vorhersagen in Wirtschaft, Politik und Gesellschaft nimmt angesichts der Folgen des Klimawandels, die eine wachsende Klimaanpassung erforderlich machen, ständig zu.

Über die Möglichkeit von Klimavorhersagen

Die Möglichkeit solcher Vorhersagen ist vor allem durch zwei Faktoren gegeben. Zum einen gehen bisherige Berechnungen davon aus, dass es in den nächsten 10-20 Jahren nur geringe Unterschiede bei den Klimaszenarien geben wird, so dass die unwägbaren sozio-ökonomischen Entwicklungen, die den Treibhausgasemissionen zugrunde liegen, wenig ins Gewicht fallen. Zum anderen ändern sich einige wichtige natürliche Prozesse des Klimasystems nur sehr langsam und können daher, wenn man ihre Gesetzmäßigkeiten kennt, mit einer gewissen Wahrscheinlichkeit vorhergesagt werden. Dazu gehören vor allem Meeresströmungen und Temperaturverhältnisse des Ozeans. Während etwa die Atmosphäre auf äußere Einflüsse relativ unmittelbar und auf mittelfristigen Zeitskalen mit nicht vorhersagbaren chaotischen Wetterabläufen reagiert, sind die Reaktionszeit des Ozeans wesentlich länger und sein Verhalten vorhersagbarer. Man schreibt daher dem Ozean ein „langes Gedächtnis“ zu. Damit sind aber bis zu einem gewissen Grad auch klimatische Verhältnisse auf dem Land prognostizierbar, die unter dem Einfluss des Ozeans stehen. Auf längeren Zeitskalen lassen sich so aus dem chaotischen Wetter bestimmte strukturierte Entwicklungen herausfiltern, deren Simulation das Ziel von Klima-Vorhersagemodellen ist.1

Hinzu kommt, dass die externen natürlichen Einflüsse (Solarstrahlung und Vulkanausbrüche) in den nächsten Jahren zwar nicht genau vorhersagbar, aber als relativ gering anzusehen sind. Von der Sonneneinstrahlung kennt man den 11jährigen Schwabe-Zyklus, nicht aber den längerfristigen Trend über mehrere Zyklen hinweg. Historische Vergleiche lassen jedoch einen nur geringen Einfluss annehmen. Auch die längerfristigen Trends der Solarstrahlung sind in der Größenordnung von Jahrhunderten relativ klein in ihrer Wirkung. So wird vom IPCC die Zunahme der Solarstrahlung seit 1750 auf 0,05 W/m2 geschätzt. Der anthropogene Strahlungsantrieb durch langlebige Treibhausgase beträgt dagegen für denselben Zeitraum 2,83 W/m2.2 Entsprechend dem Trend der letzten Jahrzehnte wird für das nächste Jahrzehnt eher eine Abnahme der Solarstrahlung angenommen. Falls die Sonnenaktivität bis zum Ende des Jahrhunderts auf das Niveau der Kleinen Eiszeit zurückgehen sollte, wird jedoch nicht mehr als ein Einfluss von -0,1 °C erwartet.3 Noch weniger ist mit einem längerfristigen Einfluss von Vulkanausbrüchen auf die Klimaentwicklung des 21. Jahrhunderts zu rechnen. Explosive Vulkanausbrüche wie etwa der des Mt. Pinatubo von 1991 können zwar durch die Emission von Aerosolen zu einem Temperaturabfall von -0,3 °C im darauf folgenden Jahr führen. Die Wirkung hält jedoch nur wenige Jahre an.

Die Vorhersagbarkeit ist allerdings regional unterschiedlich. Die höchsten Vorhersageerfolge lassen sich besonders für den Nordatlantik erzielen. Der Grund hängt mit den Schwankungen der Atlantischen Multidekaden Oszillation (AMO) auf relativ langen Zeitskalen und den davon abhängigen Meeresoberflächentemperaturen zusammen, die Vorhersagen von bis zu einem Jahrzehnt erlauben. Damit ist die Schwankung jener Meeresströmung gemeint, die in der Karibik als Golfstrom beginnt und als Nordatlantikstrom bis in den Nordost-Atlantik reicht, sowie deren Rückstrom in der Tiefe des Nordatlantik. Da die Meeresoberflächentemperatur im Nordatlantik einen großen Einfluss auf das europäische Klima hat, eignet dieses sich ebenfalls für dekadische Vorhersagen.4 Ein weiterer Grund ist, dass es für Europa und den Nordatlantik verhältnismäßig gute Beobachtungsdaten gibt, an denen die Qualität der Modelle überprüft werden kann.5

Externe Antriebe und interne Klimaschwankungen

In einem Punkt ist eine Vorhersage für die nächsten zwei oder drei Jahrzehnte ziemlich unproblematisch: Die verschiedenen Emissionsszenarien unterscheiden sich für diesen nahen Zeitraum kaum voneinander und driften erst in der zweiten Hälfte des Jahrhunderts stärker auseinander. Insofern ist die künftige Klimaänderung durch anthropogene Treibhausgase für die nächsten ca. zwei bis drei Jahrzehnte weitgehend bekannt. Nicht bekannt ist die Veränderung dieser Klimaentwicklung durch den Einfluss natürlicher Faktoren, sowohl der externen Antriebe wie die Sonneneinstrahlung oder Vulkanausbrüche als auch der internen Variabilität.

Die natürlichen externen Antriebe sind sehr schwer abzuschätzen, spielen aber eine untergeordnete Rolle. Von der Sonneneinstrahlung kennt man den 11jährigen Schwabe-Zyklus, nicht aber den längerfristigen Trend über mehrere Zyklen hinweg. Historische Vergleiche lassen jedoch einen nur geringen Einfluss annehmen. Auch die längerfristigen Trends der Solarstrahlung sind in der Größenordnung von Jahrhunderten relativ klein in ihrer Wirkung. So wird vom IPCC die Zunahme der Solarstrahlung seit 1750 auf 0,05 W/m2 geschätzt. Der anthropogene Strahlungsantrieb durch langlebige Treibhausgase beträgt dagegen für denselben Zeitraum 2,83 W/m2.[1] Der Temperaturunterschied zwischen dem Höhepunkt der Kleinen Eiszeit, dem Maunder Minimum, und der Klima-Periode 1961-1990 betrug weniger als 0,5 °C.[2] Entsprechend dem Trend der letzten Jahrzehnte wird für die nächsten Jahrzehnte eher eine Abnahme der Solarstrahlung angenommen. Falls die Sonnenaktivität bis zum Ende des Jahrhunderts auf das Niveau der Kleinen Eiszeit zurückgehen sollte, wird jedoch nicht mehr als ein Einfluss von -0,1 °C erwartet.[3]

Noch weniger ist mit einem längerfristigen Einfluss von Vulkanausbrüchen auf die Klimaentwicklung des 21. Jahrhunderts zu rechnen. Explosive Vulkanausbrüche wie etwa der des Mt. Pinatubo von 1991 können zwar durch die Emission von Aerosolen zu einem Temperaturabfall von -0,3 °C im darauf folgenden Jahr führen.[4] Die Wirkung hält jedoch nur wenige Jahre an.

Man kann daher davon ausgehen, dass die globale Erwärmung der nächsten Jahrzehnte durch den Anstieg anthropogener Treibhausgase in erster Linie durch interne Klimaschwankungen abgewandelt wird, die im Klimasystem selbst entstehen, z.B. durch Wechselwirkungen in den Subsystemen (Atmosphäre, Ozean, Biosphäre usw.) oder zwischen den Subsystemen. Von besonderer Bedeutung sind die Wechselwirkungen zwischen Ozean und Atmosphäre, da sie sich auf ähnlichen Zeitskalen bewegen wie der anthropogene Klimawandel. Sie können daher diesen maskieren und schwer erkennbar machen. Sie werden möglicherweise aber auch selbst durch den Klimawandel beeinflusst. Bekannte Beispiele sind das ENSO-Phänomen im Pazifik, die Nordatlantische Oszillation (NAO), die Atlantische Multidekadische Oszillation (AMO) und die meridionale Umwälzzirkulation im Atlantikraum (MOC). Der Einfluss solcher Schwankungen zeigt sich z.B. in der atlantischen Hurrikan-Aktivität, im Niederschlag in der Sahelzone und in den europäischen Temperaturen.[5]

Falls die natürlichen Klimaschwankungen verstanden und in Klimamodellen abgebildet werden können, wäre es auch möglich, für die nächsten Jahrzehnte (bis maximal zur Jahrhundertmitte) weitgehend verlässliche Vorhersagen über die tatsächliche Klimaentwicklung abzugeben.[5]

Einzelnachweise

  1. IPCC (2013): Climate Change 2013, Working Group I: The Science of Climate Change, Table 8.6
  2. G. Foster and S. Rahmstorf (2011): Global temperature evolution 1979–2010, Environ. Res. Lett. 6, doi:10.1088/1748-9326/6/4/044022
  3. Jones, G. S., M. Lockwood, and P. A. Stott (2012): What influence will future solar activity changes over the 21st century have on projected global near-surface temperature changes?, Journal of Geophysical Research, 117, D05103, doi:10.1029/2011JD017013
  4. Soden, B. J., R. T. Wetherald, G. L. Stenchikov, and A. Robock (2002): Global cooling after the eruption of Mount Pinatubo: A test of climate feedback by water vapor. Science, 296, 727-730
  5. 5,0 5,1 Mojib Latif, Noel S. Keenlyside (2011): A perspective on decadal climate variability and predictability Deep Sea Research Part II: Topical Studies in Oceanography 58, 1880-1894


Lizenzhinweis

Dieser Artikel ist ein Originalartikel des Klima-Wiki und steht unter der Creative Commons Lizenz Namensnennung-Weitergabe unter gleichen Bedingungen 3.0 Deutschland. Informationen zum Lizenzstatus eingebundener Mediendateien (etwa Bilder oder Videos) können in den meisten Fällen durch Anklicken dieser Mediendateien abgerufen werden und sind andernfalls über Dieter Kasang zu erfragen.
Kontakt: Dieter Kasang